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Abstract. The spectral determinantD(E) of the quartic oscillator is known to satisfy a functional
equation. This is mapped onto theA3-relatedY -system emerging in the treatment of a certain
perturbed conformal field theory, allowing us to give an alternative integral expression forD(E).
Generalizing this result, we conjecture a relationship between thex2M anharmonic oscillators
and theA2M−1 thermodynamic Bethe ansatz systems. Finally, spectral determinants for general
|x|α potentials are mapped onto the solutions of nonlinear integral equations associated with the
(twisted)XXZ and sine–Gordon models.

Since the discovery of quantum mechanics, the spectral problem associated with the
homogeneous Schrödinger operator

Ĥψk(x) =
(
− d2

dx2
+ x2M

)
ψk(x) = Ekψk(x) (1)

on the real line has been the subject of much attention, with a supply of papers which continues
to this day: [1–11] offer just a small sample of this work. Given the apparent simplicity of
the system, it is at first surprising that much of the most remarkable progress has been made
relatively recently. In the following we will be guided by the theory developed by André Voros
in [7–10], and we refer the reader to these articles for a detailed explanation of the subject.
Here we summarize a few facts that will be needed later. The confining nature of the potential
in (1) means that the spectrum{Ei} of the theory is discrete. The properties of this spectrum
can be encoded into spectral functions, the simplest example being the spectral determinant

DM(E) = DM(0)
∞∏
k=0

(
1 +

E

Ek

)
. (2)

The constantDM(0) = sin(π/(2M + 2))−1 reflects the definition ofDM as a zeta-regularized
functional determinant (see [8]).DM(E) is an entire function ofE and the positions of its
zeros coincide, by definition, with the negated discrete eigenvalues of equation (1). Despite
the absence of any closed expression for theEk, precise information about the spectrum can
be obtained by various means. The particular aspect that will be important for us is the fact
that the functionsDM(E) satisfy certain functional equations [7,8], similar to those previously
obtained for related Stokes multipliers [12]. These led to sum rules relating the different
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eigenvalues [7, 8, 10], but their utility was limited by the difficulty in finding solutions to the
equations within the class of entire functions. In this paper we point out a surprising link
between these functional equations and other systems of equations which have arisen in the
last few years in a very different context, namely the finite-size spectra of integrable (1 + 1)-
dimensional quantum field theories. Numerical work confirms the match, and we feel that this
unexpected connection between twoa priori disconnected topics deserves to be understood at
a deeper level.

We begin by reviewing some basic properties of the spectral determinants. From the Bohr–
Sommerfeld approximation one can deduce the asymptotic positions of the zerosE = −Ek:

b0(Ek)
µ ∼ 2π(k + 1/2) k→∞ (3)

whereµ = (M + 1)/2M and

b0 = π1/2

M

0( 1
2M )

0( 3
2 + 1

2M )
. (4)

In addition, DM(E) admits a semiclassical asymptotic expansion for|E| → ∞ with
| argE| < π − δ, δ > 0:

lnDM(E) ∼
∞∑
j=0

ajE
µ(1−2j) a0 = b0

2 sin(µπ)
. (5)

Now suppose thatM = 2. In this caseD(E) ≡ D2(E) satisfies the following functional
relation [7]:

D(Ej−1)D(E)D(jE) = D(Ej−1) +D(E) +D(jE) + 2 (6)

wherej = e2iπ/3. Together with the asymptotics just described, this is strongly reminiscent of
the properties of solutions to thermodynamic Bethe ansatz (TBA) equations [13,14]. Consider,
for example, the perturbation of a theory ofZh parafermions by the thermal operator of
conformal dimensions1 = 1̄ = 2/(h+2). This results in an integrable massive quantum field
theory, associated with theAh−1 Lie algebra. There areh − 1 particle species, with masses
Ma = M1 sin(πa/h)/ sin(π/h), a = 1 . . . h− 1. Speciesa andh− a are charge-conjugate:
ā = h− a. The scattering theory is factorizable, with two-particleS-matrix elements [15]:

Sab =
a+b−1∏
|a−b|+1
step 2

{p} a, b = 1 . . . h− 1 (7)

where, in the notation of [16],{p} = (p − 1)(p + 1), (p) = sinh( θ2 + i πp2h )/ sinh( θ2 − i πp2h ).
Non-perturbative information concerning the finite-size scaling functions of the model in a
cylinder geometry can be obtained using the TBA technique [13, 14, 17, 18]. The simplest
instance [13,14] expresses the ground-state energyE(M1, R) as−πc(M1R)/6R, where

c(r) = 3

π2

h−1∑
a=1

∫ ∞
−∞

dθ mar coshθLa(θ). (8)

La(θ) = ln(1 + e−εa(θ)), r = M1R andma = Ma/M1. The functionsεa(θ), a = 1 . . . h − 1
(known as pseudo-energies) solve the following equations:

εa(θ) = mar coshθ − 1

2π

h−1∑
b=1

φab ∗ La(θ) (9)

with φab(θ) = −i∂θ ln Sab(θ) and g∗f (θ) = ∫∞
−∞ dθ ′ g(θ − θ ′)f (θ ′). Now consider

Ya(θ) = eεa(θ). These are entire functions ofθ , with periodicityYa(θ + iπ(h + 2)/h) = Yā(θ)
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[19]. Conjugation symmetry of the ground-state equations means thatεa(θ) = εā(θ), so theY
are entire functions oft = exp(2hθ/(h + 2)) on the puncturedt-planeC∗ = C\{0}. In fact, the
Y are thought (cf [20]) to be analytic functions of the variablesa± = (r exp(±θ))2h/(h+2), with a
finite domain of convergence about the point(a+, a−) = (0, 0). The domain of convergence is
finite because of square-root singularities linking the ground state to excited states [13,14,18].
It was also shown in [19] that theY satisfy a set of functional identities, known as aY -system.
At h = 4, t = exp(4θ/3), and, taking the conjugation symmetry into account, theY -system is

Y1(e
−iπ/3t)Y1(e

iπ/3t) = 1 +Y2(t) (10)

Y2(e
−iπ/3t)Y2(e

iπ/3t) = (1 +Y1(t))
2. (11)

Substituting (10) into (11), it is easy to see thatY1(t) satisfies a constraint involving itself
alone:

Y1(e
−2π i/3t)Y1(t)Y1(e

2π i/3t) = Y1(e
−2π i/3t) + Y1(t) + Y1(e

2π i/3t) + 2. (12)

The relation with equation (6) is clear, but the analytic properties ofY1 do not quite match
those ofD yet. In particular,Y1 has an essential singularity att = 0. To remedy this, we take
a massless limit, replacing the driving termmar coshθ with mareθ (this amounts to setting
a− = 0). The resultingY are now nonsingular att = 0, and furthermore, for the ground
state their zeros lie on the line Imθ = 3π/4, the negative real axis in thet-plane. Setting
m2r = b0|M=2 and t = E, and identifyingY1(t) with D(E), all of the standard properties
of the spectral determinant of the quartic oscillator are reproduced. For example, the largeθ

asymptoticY2(θ) ∼ b0eθ is obtained by dropping the convolution term in (9), and implies that
Y2(θ) takes the value−1 at the pointsθ = xk + π i/2, with b0exk ∼ 2π(k + 1

2) ask → ∞.
Combined with (10), this shows that the zeros ofY1(θ) are atθ = xk + 3π i/4, matching the
asymptotic behaviour (3). Finally, att = 0 the solutions of theY -system areY1 = 2, Y2 = 3,
matching the resultD(0) = 2. Still unsatisfied, we performed a numerical check. Equation (9)
was solved for realθ and then, as in [20], equation (9) and theY -system were used to obtain
the values ofY1(θ) on the line Imθ = 3π/4. The first zeros were found to high accuracy, and
the resulting predictions for the first six energy levels of thex4 potential are compared with
earlier results in table 1.

ForM > 2 the equations satisfied byDM(E) become more intricate, and we have yet
to map them explicitly into known TBA systems. Instead we took a shortcut, though later
we shall give an alternative, and more systematic, treatment of the problem. The functional
relations forDM(E) have aZh+2 symmetry [8], whereh = 2M. This suggests an examination
of Y -systems which share this symmetry in order to find a generalization of theM = 2 result.
Of the diagonal scattering theories, this picks out the models associated with theAh−1 orDh/2+1

Table 1. Energy levels for thex4 potential from the TBA, compared with previous results.

k Ek (TBA) Ek (QM)

0 1.060 362 090 484 18 1.060 362 090 484 182 899 65a

1 3.799 673 029 801 39 3.799 673 029 80b

2 7.455 697 937 986 72 7.455 697 937 986 738 392 16a

3 11.644 745 511 378 15 11.644 745 511 4b

4 16.261 826 018 850 24 16.261 826 018 850 225 937 89a

5 21.238 372 918 235 95 21.238 372 918 2b

a from [5,9].
b from [3].
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Table 2. Energy levels for thex6 potential from the TBA compared with previous results.

k Ek (TBA) Ek (QM)

0 1.144 802 453 797 075 1.144 802 453 797 07a

1 4.338 598 711 513 990 4.338 598 711 5b

2 9.073 084 560 921 449 9.073 09c

3 14.935 169 634 910 78 14.935 169 634 9b

a From table 2 of [11].
b From table I of [9].
c From table VII of [4], rescaled by 23/4.

Table 3. Energy levels for thex8 potential from the TBA compared with previous results.

k Ek (TBA) Ek (QM)

0 1.225 820 113 8005 1.225 820 113 82a

1 4.755 874 413 9607 4.755 8b

2 10.244 946 977 2369 10.245 0b

3 17.343 087 970 5857 17.343 3b

a From table 2 of [11].
b From table VII of [4], rescaled by 24/5.

Lie algebras (cf [14,16,19]), for which theY -systems are

Ya

(
θ − i

π

h

)
Ya

(
θ + i

π

h

)
=

r∏
b=1

(1 +Yb(θ))
lab (13)

wherer is the rank andlab the incidence matrix of the relevant Dynkin diagram. However, the
constantsYa(θ = −∞) do not match the value sin(π/(2M + 2))−1 of DM(0). But all is not
lost: we can invoke another system of functional relations, related to theY -system, called the
T -system (cf [21]):

Ta

(
θ − i

π

h

)
Ta

(
θ + i

π

h

)
= 1 +

r∏
b=1

Tb(θ)
lab (14)

with Ya(θ) =
∏r
b=1 Tb(θ)

lab . WhenM = 2 we haveT2(θ) = Y1(θ), and so we can also search
for our generalization amongst theT -systems. Asymptotic checks lead to the conjecture
thatDM(E) coincides with the functionTM(θ) of the masslessA2M−1 TBA system obtained
from equation (9) by settingh = 2M, replacing the termsmar coshθ bymareθ , and setting
mMr = b0 and eθ/µ = E. This was checked using the fact that the zeros ofTM(θ) on the line
Im θ = (h + 2)π/2h correspond to zeros of 1 +YM(θ) on the line Imθ = π/2, and these can
be located using (9) and theY -system as before. Tables 2 and 3 show some results forM = 3
and 4.

The story might have ended here, but in fact it goes considerably further. Following [9],
we begin by asking about potentials of odd degree, so that the confining potential is|x|2M , with
M now allowed to be a half-integer. It helps to split the eigenvalues according to the parity of
their eigenfunctions, decomposingD(E) accordingly asD(E) = D+(E)D−(E), with

D±(E) = D±(0)
∏
k

even
odd

(
1 +

E

Ek

)
. (15)

These spectral subdeterminants together satisfy a rather simpler equation than that obeyed by
the full spectral determinant, which also holds ifM is a half-integer [8]:

�1/2D+(�−1E)D−(�E)−�−1/2D+(�E)D−(�−1E) = 2i (16)
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where� = eiπ/(M+1). This is very similar to the so-called ‘quantum Wronskian’ condition
satisfied by theQ-operators introduced in [22]. The similarity becomes more striking when
the condition is written in terms of the operatorsA±(λ) ≡ λ∓2P/β2

Q±(λ):

q2P/β2
A+(q

1/2λ)A−(q−1/2λ)− q−2P/β2
A+(q

−1/2λ)A−(q1/2λ) = 2i sin(2πP ). (17)

The parametersq andβ2 are related byq = eiπβ2
. As it stands, this is an operator equation,

but it becomes a functional equation when applied to the simultaneous eigenvectors|α, p〉 of
the operatorsA±(λ) andP , defined viaA±(λ)|α, p〉 = A±(λ, p)|α, p〉, P |α, p〉 = p|α, p〉.
(We refer the reader to [22] for the background to these definitions.) For brevity we will leave
thep-dependence of the eigenvaluesA±(λ, p) implicit from now on; they are entire functions
of λ2, withA±(0) = 1, and a finite number of complex and negative real zeros. The remaining
zeros accumulate towards +∞ along the positive real axis of theλ2-plane. To choose particular
eigenvalues as candidate spectral subdeterminants, we recall that the zeros ofD±(E) lie on the
negative realE axis. This selects the ‘vacuum eigenvalues’A

(v)
∓ (λ), for whichall of the zeros

lie on the real axis of theλ2-plane, and suggests to identifyA(v)∓ (νE1/2) with α±D±(−E),
using the following dictionary, where as beforeµ = (M + 1)/2M:

β2 = 1/(M + 1) p = 1/(4M + 4)

ν = (2M + 2)−1/2µ0

(
1

2µ

)−1

α± = √π(2M + 2)∓1/4µ0

(
1

2
± 1

4µ

)−1

.

(18)

Note,α+α− = sinπ/(2M + 2). The constantν is fixed by comparing the behaviour ofA∓(λ)
asλ2→−∞ [22] with that ofD±(E) asE→ +∞ [10]:

lnA∓(λ) ∼ (M + 1)0

(
1

2µ

)2µ

a0(−λ2)µ

lnD±(E) ∼ 1
2a0E

µ (a0 = b0/(2 sinµπ)).
(19)

Finally, the zeros ofA(v)∓ (λ) should all lie on thepositivereal axis of theλ2-plane if they are
to map onto those ofD±(E). This holds if∓2p > −β2 [22], a condition which is indeed
met here. For a more precise check, we sought some numerical evidence. As in [22], consider
the functionsa(v)± (λ) = e±4π ipA

(v)
± (qλ)/A

(v)
± (q−1λ). The so-calledT –Q relation implies that

they assume the value−1 precisely at the zeros either ofA(v)± (λ), or of a related entire function
T (λ). For the vacuum eigenvalues, the zeros ofT (λ) are away from the positive real axis and
so a search of this line for zeros ofa(v)± (λ) + 1 will allow us to locate the zeros ofA(v)± (λ). At
the values ofp andβ given by (18), the functionsf±(θ) ≡ ln a(v)± (eθ/2µ) solve the following
nonlinear integral equations (NLIE):

f±(θ) = − 1
2ib0ν

−2µeθ +
∫
C1

ϕ(θ − θ ′) ln(1 + ef±(θ
′)) dθ ′

−
∫
C2

ϕ(θ − θ ′) ln(1 + e−f±(θ
′)) dθ ′ ± iπ/2 (20)

where the contoursC1 andC2 run from−∞ to +∞, just below and just above the realθ -axis,
and

ϕ(θ) =
∫ ∞
−∞

eiωθ sinh π
2 (ξ − 1)ω

2 coshπ2ω sinh π
2 ξω

dω

2π
ξ = 1

M
. (21)

Such equations first arose in [23, 24], in the contexts of the (twisted)XXZ model, and the
sine–Gordon model at couplingβ.
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Table 4. Energy levels for the|x|15/4 potential computed using equation (20), compared with direct
QM results.

k Ek (NLIE) Ek (QM)

0 1.050 345 112 2723 1.050 345 11
1 3.719 071 042 5856 3.719 071 04
2 7.206 151 453 7816 7.206 151 45
3 11.148 641 889 036 11.148 641 9

Solving (20) numerically, we can now test the conjecture (18). ForM = 2, 3, 4, the
results of tables 1–3 were reproduced, with disagreements being typically in the last quoted
digit of the TBA data. Next we setM = 3

2, and obtained the results quoted in [10] for the
|x|3 potential. It was then natural to conjecture that the identification remains valid at arbitrary
M > 1. In the absence of suitable published data, we used the MAPLE package to diagonalize
the Hamiltonian (1) in a basis of harmonic oscillator eigenfunctions, as in [10]. Agreement
with (20) was confirmed for various potentials|x|2M ; some results forM = 15

8 are shown in
table 4.

For M 6 1, the formulae for the determinants become divergent and need further
regularization [10]; at the same time, the calculations of [22] depart from the so-called
‘semiclassical domain’ and must be modified. Nevertheless, we have evidence that the
correspondence continues to hold. AtM = 1, the sine–Gordon model is at the free-fermion
point, the kernel (21) vanishes, and the energy levelsEk = (2k + 1) of the simple harmonic
oscillator are easily recovered. Then atM = 1

2, theD±(E) are known in closed form [10],
leading to the predictions

a(v)+ (νE1/2) = �Ai (−�2E)/Ai (−�−2E)

a
(v)
− (νE

1/2) = �−1 Ai ′(−�2E)/Ai ′(−�−2E)
(22)

where Ai(E) is the Airy function and� = e2π i/3. These were verified to 15 digits. Note that
β2 = 2

3 for M = 1
2: this is theN = 2 supersymmetric point of the sine–Gordon model, and

it is tempting to conjecture a link with the Painlevé III results of [25], though this remains to
be elucidated. Finally, we made a numerical check against MAPLE results atM = 7

8, again
finding agreement.

WhenM is an integer the potential is analytic; it is interesting that these cases are mapped
onto the reflectionless points of the sine–Gordon model. In the TBA framework, these are
described byDM+1-related systems, with the twistp = 1/(4M + 4) implemented through
fugacities±i on the fork nodesM andM + 1 (see [25] for similar manœuvres in the repulsive
regime). It can be checked that, for the ground state withεM = εM+1, this is equivalent to an
A2M−1-related system, thus making a link with the approach described in the first half of this
paper.

We are grateful to Ferdinando Gliozzi, Bernard Nienhuis and especially André Voros for useful
discussions. The work was supported in part by a TMR grant of the European Commission,
reference ERBFMRXCT960012. PED thanks the EPSRC for an Advanced Fellowship, and
RT thanks SPhT Saclay for hospitality and the Universiteit van Amsterdam for a post-doctoral
fellowship.

Note added in proof. We have now learnt that the result (22) has been obtained previously [26], and also that relations
of the form (6) have arisen in the context of integrable lattice models in [27]. We would like to thank Paul Fendley
and Paul Pearce for informing us of this work.
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